工作原理/系统设计

采用近红外透射光谱技术在耳垂两侧测量血糖,在耳垂两侧分别放置光源和光检测器。透过耳垂的近红外光总量取决于该区域的血糖量。选择耳垂进行测量是因为耳垂位置没有骨组织而且相对比较薄[1].同时需要将近红外(NIR)光照射到耳垂的一侧,而另一侧放置的接收器用来接收衰减光,然后对衰减光信号进行采样和处理。

选用两个Thorlabs LED(LED 1550E)作为光源[2].由于传统硅光电二极管的光谱带宽有限,无法用于接收近红外光,因此必须使用其他类型的光电二极管。在本案例中我们选用了波长1550nm的高灵敏度Marktech铟镓砷光电二极管[3].将RC低通滤波器连接到光电二极管的输出以降低高频噪声。与具有相同或更高葡萄糖响应能力的其他波长相比,波长为1550nm的光发射器和接收器的成本相对较低。

除了血液中的葡萄糖含量外,近红外光的透光率还取决于光路中的血液量。也就是在相同葡萄糖含量下,血液量较大会导致透光率较低,反之亦然。因此需要根据测量时耳垂中的血液量调节葡萄糖的值。血液量可通过血液含氧量来估算[1].而血液氧含量可使用脉搏血氧仪测量。脉搏血氧仪利用红光和红外光来区分血液中的血红蛋白和氧化血红蛋白,并以此为基础获得氧饱和度[4].

另外一个影响葡萄糖测量的物理参数是耳垂组织厚度。当多个人使用一台设备时就会出现这个问题,因为这种情况下不同人的耳垂厚度可能不同。组织厚度决定近红外光的路径长度,路径越长,透光率越低。耳垂组织厚度可采用皮肤衰减率较高的绿光来测量。

用来感应近红外光谱信号的铟镓砷光电二极管也可用于感应其他波长(例如绿光、红光和红外光),因为这种二极管的光谱响应范围涵盖以上所用波长。

所有这些变量都在PSoC5LP中进行放大、采样和处理,随后通过蓝牙传送到一个安卓应用中。图1为整个系统流程方框图。

图1.系统结构图

感应和预处理

将铟镓砷光电二极管信号送入放大器,以放大微弱的近红外光谱信号。红光、红外光和绿光信号的衰减不会造成影响,因此无需放大。我们可利用内部可编程增益放大器(PGA)来放大近红外光谱信号。从葡萄糖变化中记录几毫伏的电压变化,再利用1.024V参考电压和增益为50的可编程放大器对其进行放大。利用单个Δ∑模数转换器连同一个模拟多路转换器对感应信号进行采样。用18位分辨率采样近红外和绿光信号,用16位分辨率采样红光和红外信号,以便提高采样率,避免心率变化引起信号混淆(见图2)。

图2.PsoC的外部元件与原理图

可使用脉宽调制(PWM)来控制LED的发射功率。由于使用五个LED(2个近红外光、1个红外光、1个红光和1个绿光),因此需要五个8位PWM模块,而且占空比不同。近红外LED的传输波长会随直流电压平均值而改变。近红外LED运行于3个不同的占空比,以使光波波长在1550nm上下浮动。这样做是为了降低原始葡萄糖值之间的噪声。

心率引起的耳垂血液量变化如果得不到正确处理就会成为主要噪声源。为了消除心率变化的影响,在打开红光、红外和近红外LED后,应该在100毫秒内对衰减信号采样。对每个LED输出采集20个样本,共采集120个样本(三个近红外波长占60个,红外、红光和绿光波长各占20个)。环境光源也会产生大量噪声,并被光学传感器采集到。为了消除这种噪声,应该在打开LED之前存储几个样本。随后从实际信号中减去环境光测量值。所有样本都用32位整型变量存储,以应对乘法与加法溢出问题。